Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.345
Filtrar
2.
Heliyon ; 10(8): e29342, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628734

RESUMO

Objective: In this study, the effect of in vitro Fertilization-Embryo Transfer (IVF-ET) on the clinical outcome of patients with syphilis infertility during resuscitation cycle. Methods: A retrospective single-center method was adopted. This study included 4430 pairs of infertile patients who underwent syphilis detection. The influence of the syphilis freeze-thaw embryos transplantation outcome was studied in the patients with infertility by comparing the general clinical characteristics of patients (age, years of infertility, body mass index (BMI), basal follicle stimulating hormone (FSH), serum basal estradiol (Estradiol, E2), transplanted intimal thickness, the number of embryos transferred) and the clinical pregnancy (biochemical pregnancy rate, clinical pregnancy rate, implantation rate, live birth rate and abortion rate). Results: Firstly, in the clinical outcome of one frozen-thawed embryos transfer, the live birth rate of the woman's syphilis-infected group was lower than that of the uninfected group (71.3 % vs. 50.0 %), while the abortion rate was higher than that of the uninfected group (7.8 % vs. 26.7 %), and there was a statistical difference (P < 0.05), and there was no statistical difference in other indicators between other groups (P > 0.05). Secondly, in the clinical outcome of two frozen-thawed embryos transfers, the biochemical pregnancy rate (61.3 % vs. 28.6 %) and clinical pregnancy rate (42.9 % vs. 14.3 %) of the group which was infected with syphilis alone were lower than those of the uninfected group (P < 0.05), and other indicators among the other groups showed no statistical difference (P > 0.05). Thirdly, in the clinical outcomes of frozen-thawed embryos transfer three times or more, there was no significant difference in the clinical indicators between the syphilis infertility patients and the non-infected infertility patients (P > 0.05). Conclusion: When the syphilis infertility patients and the non-infected infertile patients underwent IVF-ET treatment for the first time, the live birth rate and abortion rate of the syphilis group were significantly different (P < 0.05). In the outcome of two transplants, the biochemical pregnancy rate and clinical Pregnancy rates were significantly reduced so patients with syphilis infertility who undergo IVF-ET should be informed about the risk of adverse clinical outcomes.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38631552

RESUMO

BACKGROUND: Predicting cognitive decline in those already Aß positive or Tau positive among the aging population poses clinical challenges. In Alzheimer's disease (AD) research, intra-default mode network (DMN) connections play a pivotal role in diagnosis. This paper proposes metabolic connectivity within the DMN as a supplementary biomarker to the AT(N) framework. METHODS: Extracting data from 1292 subjects in the Alzheimer's Disease Neuroimaging Initiative, we collected paired T1-weighted structural MRI and 18F-labeled-fluorodeoxyglucose positron emission computed tomography (PET) scans. Individual metabolic DMN networks were constructed, and metabolic connectivity (MC) strength in DMN was assessed. In the cognitively unimpaired (CU) group, the Cox model identified CU(MC+), high-risk subjects, with Kaplan-Meier survival analyses and hazard ratio (HR) revealing MC strength's predictive performance. Spearman correlation analyses explored relationships between MC strength, AT(N) biomarkers, and clinical scales. DMN standard uptake value ratio (SUVR) provided comparative insights in the analyses. RESULTS: Both MC strength and SUVR exhibit gradual declines with cognitive deterioration, displaying significant intergroup differences. Survival analyses indicate enhanced Aß and Tau prediction with both metrics, with MC strength outperforming SUVR. Combined MC strength and Aß yield optimal predictive performance (HR = 9.29), followed by MC strength and Tau (HR = 8.92). In CU(MC+), MC strength correlates significantly with CSF Aß42 and AV45 PET SUVR (r = 0.22, -0.19). Generally, MC strength's correlation with AT(N) biomarkers exceeded SUVR. CONCLUSIONS: Individuals with normal cognition and disrupted DMN metabolic connectivity face an elevated cognitive decline risk linked to Aß, preceding metabolic issues.

5.
Environ Sci Technol ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613493

RESUMO

Foliar application of beneficial nanoparticles (NPs) exhibits potential in reducing cadmium (Cd) uptake in crops, necessitating a systematic understanding of their leaf-root-microorganism process for sustainable development of efficient nano-enabled agrochemicals. Herein, wheat grown in Cd-contaminated soil (5.23 mg/kg) was sprayed with different rates of four commonly used NPs, including nano selenium (SeNPs)/silica (SiO2NPs)/zinc oxide/manganese dioxide. SeNPs and SiO2NPs most effectively reduced the Cd concentration in wheat grains. Compared to the control, Cd concentration in grains was significantly decreased by 35.0 and 33.3% by applying 0.96 mg/plant SeNPs and 2.4 mg/plant SiO2NPs, and the grain yield was significantly increased by 33.9% with SeNPs application. Down-regulated gene expression of Cd transport proteins (TaNramp5 and TaLCT1) and up-regulated gene expression of vacuolar Cd fixation proteins (TaHMA3 and TaTM20) were observed with foliar SeNPs and SiO2NPs use. SeNPs increased the levels of leaf antioxidant metabolites. Additionally, foliar spray of SeNPs resulted in lower abundances of rhizosphere organic acids and reduced Cd bioavailability in rhizosphere soil, and soil microorganisms related to carbon and nitrogen (Solirubrobacter and Pedomicrobium) were promoted. Our findings underscore the potential of the foliar application of SeNPs and SiO2NPs as a plant and rhizosphere soil metabolism-regulating approach to reduce Cd accumulation in wheat grains.

6.
J Asian Nat Prod Res ; : 1-8, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629616

RESUMO

A new 14-membered resorcylic acid lactone (RAL14), chaetolactone A (1), along with three known ones (2-4), was obtained from the fermentation of the soil-derived fungus Chaetosphaeronema sp. SSJZ001. Their structures were established based on extensive spectroscopic data analyses (UV, IR, HRESIMS, 1D, and 2D NMR),13C NMR chemical shifts calculations coupled with the DP4+ probability method, theoretical calculations of ECD spectra, as well as X-ray diffraction analysis. All compounds were evaluated for their cytotoxic effects against A549, HO-8910, and MCF-7 cell lines.

7.
Inflammation ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630168

RESUMO

Periodontal disease is the pathological outcome of the overwhelming inflammation in periodontal tissue. Cellular senescence has been associated with chronic inflammation in several diseases. However, the role of cellular senescence in the pathogenesis of periodontal disease remained unclear. This study aimed to investigate the role and the mechanism of cellular senescence in periodontal disease. Using single-cell RNA sequencing, we first found the upregulated level of cellular senescence in fibroblasts and endothelial cells from inflamed gingival tissue. Subsequently, human gingival fibroblasts isolated from healthy and inflamed gingival tissues were labeled as H-GFs and I-GFs, respectively. Compared to H-GFs, I-GFs exhibited a distinct cellular senescence phenotype, including an increased proportion of senescence-associated ß-galactosidase (SA-ß-gal) positive cells, enlarged cell morphology, and significant upregulation of p16INK4A expression. We further observed increased cellular reactive oxygen species (ROS) activity, mitochondrial ROS, and DNA damage of I-GFs. These phenotypes could be reversed by ROS scavenger NAC, which suggested the cause of cellular senescence in I-GFs. The migration and proliferation assay showed the decreased activity of I-GFs while the gene expression of senescence-associated secretory phenotype (SASP) factors such as IL-1ß, IL-6, TGF-ß, and IL-8 was all significantly increased. Finally, we found that supernatants of I-GF culture induced more neutrophil extracellular trap (NET) formation and drove macrophage polarization toward the CD86-positive M1 pro-inflammatory phenotype. Altogether, our findings implicate that, in the inflamed gingiva, human gingival fibroblasts acquire a senescent phenotype due to oxidative stress-induced DNA and mitochondrial damage, which in turn activate neutrophils and macrophages through the secretion of SASP factors.

8.
Foods ; 13(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611427

RESUMO

Residue dissipation and risk assessment of difenoconazole and its metabolite difenoconazole-alcohol during tea growing, processing, and brewing was first investigated by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The limits of quantification for both difenoconazole and difenoconazole-alcohol were 0.001 mg/kg in fresh tea leaves and tea, and 0.0002 mg/L in tea infusion. In field trials, the dissipation half-lives of difenoconazole in fresh tea leaves was 1.77 days. After spraying, the residues of difenoconazole-alcohol increased and then gradually dissipated like difenoconazole. After 14 days, the dissipation rates of difenoconazole and difenoconazole-alcohol reached 99%. When fresh tea leaves were harvested on different days, the total processing factors (PFs) of difenoconazole and difenoconazole-alcohol for green tea were 0.86-1.05 and 0.78-0.85, respectively, while the total PFs for black tea were 0.83-1.13 and 0.82-1.66, respectively. Metabolism of difenoconazole was accelerated during tea processing. When brewing black tea, the leaching rates (LRs) of difenoconazole and difenoconazole-alcohol were 8.4-17.9% and 31.8-38.9%, respectively, while when brewing green tea, the LRs were 15.4-23.5% and 30.4-50.6%, respectively. The LRs of difenoconazole and difenoconazole-alcohol in black tea were higher than those in green tea. The potential threat to human health for dietary intake of difenoconazole and difenoconazole-alcohol residues from tea consumption is negligible. However, the dietary risk of difenoconazole in fruits and vegetables that are essential for daily diets is concerning, with a risk probability of 158%.

9.
J Sci Food Agric ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572795

RESUMO

BACKGROUND: The present study aimed to investigate the effects of tremella polysaccharides on the gel properties and antioxidant activity of yak skin gelatin with a view to improving the quality of collagen jellies. The preparation of composite gels were performed by yak skin gelatin (66.7 mg mL-1) and tremella polysaccharides with different concentrations (0, 2, 4, 6, 8 mg mL-1), and finally the collagen jelly was prepared by composite gel (yak skin gelatin: 66.7 mg mL-1; tremella polysaccharides:6 mg mL-1) with the best performance. RESULTS: Tremella polysaccharides not only improved the hardness, springiness, gel strength, water holding capacity and melting temperature of yak skin gelatin, but also enhanced the composite gel's scavenging activity against ABTS radicals, DPPH radicals, O2 and OH radicals. The filling of tremella polysaccharides into the gelatin network increased the number of crosslinking sites inside the gel, which resulted in the gel network structure becoming dense and orderly. The gel particles became finer and more uniform, and the thermal stability was improved. Furthermore, the sensory score of commercially available gelatin jelly decreased more rapidly during storage compared to the composite gel jelly. CONCLUSION: The gel properties and antioxidant activity of yak skin gelatin were improved by adding tremella polysaccharides, and then the quality and storage properties of the jelly were improved, which also provided technical reference for the development of functional gel food. © 2024 Society of Chemical Industry.

10.
Antimicrob Resist Infect Control ; 13(1): 42, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616284

RESUMO

BACKGROUND: COVID-19 and bacterial/fungal coinfections have posed significant challenges to human health. However, there is a lack of good tools for predicting coinfection risk to aid clinical work. OBJECTIVE: We aimed to investigate the risk factors for bacterial/fungal coinfection among COVID-19 patients and to develop machine learning models to estimate the risk of coinfection. METHODS: In this retrospective cohort study, we enrolled adult inpatients confirmed with COVID-19 in a tertiary hospital between January 1 and July 31, 2023, in China and collected baseline information at admission. All the data were randomly divided into a training set and a testing set at a ratio of 7:3. We developed the generalized linear and random forest models for coinfections in the training set and assessed the performance of the models in the testing set. Decision curve analysis was performed to evaluate the clinical applicability. RESULTS: A total of 1244 patients were included in the training cohort with 62 healthcare-associated bacterial/fungal infections, while 534 were included in the testing cohort with 22 infections. We found that patients with comorbidities (diabetes, neurological disease) were at greater risk for coinfections than were those without comorbidities (OR = 2.78, 95%CI = 1.61-4.86; OR = 1.93, 95%CI = 1.11-3.35). An indwelling central venous catheter or urinary catheter was also associated with an increased risk (OR = 2.53, 95%CI = 1.39-4.64; OR = 2.28, 95%CI = 1.24-4.27) of coinfections. Patients with PCT > 0.5 ng/ml were 2.03 times (95%CI = 1.41-3.82) more likely to be infected. Interestingly, the risk of coinfection was also greater in patients with an IL-6 concentration < 10 pg/ml (OR = 1.69, 95%CI = 0.97-2.94). Patients with low baseline creatinine levels had a decreased risk of bacterial/fungal coinfections(OR = 0.40, 95%CI = 0.22-0.71). The generalized linear and random forest models demonstrated favorable receiver operating characteristic curves (ROC = 0.87, 95%CI = 0.80-0.94; ROC = 0.88, 95%CI = 0.82-0.93) with high accuracy, sensitivity and specificity of 0.86vs0.75, 0.82vs0.86, 0.87vs0.74, respectively. The corresponding calibration evaluation P statistics were 0.883 and 0.769. CONCLUSIONS: Our machine learning models achieved strong predictive ability and may be effective clinical decision-support tools for identifying COVID-19 patients at risk for bacterial/fungal coinfection and guiding antibiotic administration. The levels of cytokines, such as IL-6, may affect the status of bacterial/fungal coinfection.


Assuntos
COVID-19 , Coinfecção , Infecção Hospitalar , Micoses , Adulto , Humanos , Pacientes Internados , Coinfecção/epidemiologia , Interleucina-6 , Estudos Retrospectivos , COVID-19/epidemiologia , Infecção Hospitalar/epidemiologia , Aprendizado de Máquina , Micoses/epidemiologia , Atenção à Saúde
11.
J Neuroinflammation ; 21(1): 81, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566081

RESUMO

BACKGROUND: Senescent astrocytes play crucial roles in age-associated neurodegenerative diseases, including Parkinson's disease (PD). Metformin, a drug widely used for treating diabetes, exerts longevity effects and neuroprotective activities. However, its effect on astrocyte senescence in PD remains to be defined. METHODS: Long culture-induced replicative senescence model and 1-methyl-4-phenylpyridinium/α-synuclein aggregate-induced premature senescence model, and a mouse model of PD were used to investigate the effect of metformin on astrocyte senescence in vivo and in vitro. Immunofluorescence staining and flow cytometric analyses were performed to evaluate the mitochondrial function. We stereotactically injected AAV carrying GFAP-promoter-cGAS-shRNA to mouse substantia nigra pars compacta regions to specifically reduce astrocytic cGAS expression to clarify the potential molecular mechanism by which metformin inhibited the astrocyte senescence in PD. RESULTS: We showed that metformin inhibited the astrocyte senescence in vitro and in PD mice. Mechanistically, metformin normalized mitochondrial function to reduce mitochondrial DNA release through mitofusin 2 (Mfn2), leading to inactivation of cGAS-STING, which delayed astrocyte senescence and prevented neurodegeneration. Mfn2 overexpression in astrocytes reversed the inhibitory role of metformin in cGAS-STING activation and astrocyte senescence. More importantly, metformin ameliorated dopamine neuron injury and behavioral deficits in mice by reducing the accumulation of senescent astrocytes via inhibition of astrocytic cGAS activation. Deletion of astrocytic cGAS abolished the suppressive effects of metformin on astrocyte senescence and neurodegeneration. CONCLUSIONS: This work reveals that metformin delays astrocyte senescence via inhibiting astrocytic Mfn2-cGAS activation and suggest that metformin is a promising therapeutic agent for age-associated neurodegenerative diseases.


Assuntos
Metformina , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Astrócitos/metabolismo , Neurônios Dopaminérgicos , Nucleotidiltransferases/metabolismo , Mitocôndrias/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/farmacologia
12.
Heliyon ; 10(7): e28196, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571650

RESUMO

In this study, interprovincial panel data of China from 2011 to 2020 are selected and empirically examined to determine the effects of three types of environmental regulation tools: command-and-control, market-incentive, and public-participation types. Then, hierarchical regression analysis and instrumental variables are used to analyze and verify the mediating role of technological innovation. Results show no significant relationship between command-and-control regulation and environmental pollution, while market-incentive and public-participation regulations have a significantly negative inhibitory effect on environmental pollution and contribute to pollution reduction. In addition, product and process innovations play partially mediating roles between market-incentive regulation and environmental pollution and between public-participation regulation and environmental pollution, respectively, thus indicating that technological innovation is an effective way to reduce pollutant emissions. Compared with product innovation, process innovation has a better effect on pollution emission reduction but a smaller incentive effect under environmental regulation. This finding indicates that enterprise technology innovation and environmental regulation fail to achieve a suitable match for maximizing environmental benefits. Further analysis shows that the effects of the three types of environmental regulation tools on reducing pollution emissions vary in different periods and show significant changes around 2010. The effects of command-based regulation weaken, while those of the pollution abatement of market-incentive and public-participation regulations increase.

13.
Patient Prefer Adherence ; 18: 787-796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572223

RESUMO

Objective: To explore the status and influencing factors of COVID-19 vaccination for 3-7-year-old children born prematurely. Methods: A questionnaire was administered to parents of preterm infants born between 1 January 2016 and 31 December 2019 in Gansu Maternal and Child Health Hospital using convenience sampling. Results: It was found that 96.81% of 282 parents had known about COVID-19 vaccines and acquired COVID-19- and vaccine-related knowledge primarily through WeChat (104/282, 36.88%) and TikTok (91/282, 32.27%). Most parents of the group whose children were vaccinated with a COVID-19 vaccine believed that this approach was effective in preventing COVID-19 (49.75%), whereas most parents of the group whose children were not vaccinated were worried about the adverse reaction and safety of the vaccine (45.88%). According to the regression analysis, the risk factors of children born prematurely receiving a COVID-19 vaccine were no vaccination against COVID-19 in the mothers (odds ratio [OR]=48.489, 95% CI: 6.524-360.406) and in younger children (OR=12.157, 95% CI: 6.388-23.139). Previous history of referral (OR=0.229, 95% CI: 0.057-0.920), history of diseases (OR=0.130, 95% CI: 0.034-0.503) and high educational level of guardians (OR=0.142, 95% CI: 0.112-0.557) were protective factors for children born prematurely to receive COVID-19 vaccination. Conclusion: There is a relatively high proportion of children born prematurely receiving COVID-19 vaccination, but some people still have concerns. Publicity in the later stage can be conducted through WeChat, TikTok and other social media platforms, with special attention paid to the populations with lower education levels.

15.
J Immunother ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38557756

RESUMO

Antibody-drug conjugates (ADCs) combine the high specificity of antibodies with the cytotoxicity of payloads and have great potential in pan-cancer immunotherapy. However, the current payloads for clinical uses have limited the therapeutic window due to their uncontrollable off-site toxicity. There is unmet needs to develop more potent ADC payloads with better safety and efficacy profiles. Nitric oxide (NO) is a special molecule that has low toxicity itself, which can kill tumor cells effectively when highly concentrated, has broad application prospects. Previously, we prepared for the first time an antibody-nitric oxide conjugate (ANC)-HN01, which showed inhibitory activity against hepatocellular carcinoma. However, the random conjugation method made HN01 highly heterogeneous and unstable. Here, we used site-specific conjugation-based engineered cysteine sites (CL-V211C) of anti-CD24 antibody to prepare a second-generation ANC with a drug-to-antibody ratio of 2. The homogeneous ANC, HN02 was stable in human plasma, shown in vitro bystander effect to neighboring cells and antiproliferative activity to CD24-targeted tumor cells. Compared with HN01, HN02 significantly prolonged the survival of tumor-bearing mice. In summary, we developed a stable and homogeneous site-specific conjugated ANC, which showed good antitumor activity and improved safety profile both in vitro and in vivo. This study provides new insight into the development of next generation of ADC candidates.

16.
Opt Lett ; 49(7): 1778-1781, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560861

RESUMO

Laser-induced subwavelength nanogratings on films find widespread applications in enhancing a spectrum through surface plasmon excitation. It is challenging to achieve high uniformity, diversity, and controllability due to the intricate interplay between two basic mechanisms in laser nanostructuring: the Marangoni effect and surface plasmon polaritons (SPPs). We tune the coupled effect on Ge2Sb2Te5 films by adjusting the laser polarization, whose component controls the two effects' strength ratio. The Marangoni effect dominates when the SPPs' direction mismatches with the growing direction of nanogratings. Tuning this competition relationship helps to create nanogratings with tunable duty cycle and distribution, which are significant for light modulation applications. A highly efficient direct writing method with a line-shaped laser beam is employed to create large-area regular nanogratings by enhancing the effect tuning. We demonstrate diverse Au nanogratings with the aid of a lift-off operation and apply them in surface plasmon-coupled emission (SPCE), showcasing exceptional enhancement and narrowing performance.

17.
medRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562733

RESUMO

Hyperpolarization activated Cyclic Nucleotide (HCN) gated channels are crucial for various neurophysiological functions, including learning and sensory functions, and their dysfunction are responsible for brain disorders, such as epilepsy. To date, HCN2 variants have only been associated with mild epilepsy and recently, one monoallelic missense variant has been linked to developmental and epileptic encephalopathy. Here, we expand the phenotypic spectrum of HCN2- related disorders by describing twenty-one additional individuals from fifteen unrelated families carrying HCN2 variants. Seventeen individuals had developmental delay/intellectual disability (DD/ID), two had borderline DD/ID, and one had borderline DD. Ten individuals had epilepsy with DD/ID, with median age of onset of 10 months, and one had epilepsy with normal development. Molecular diagnosis identified thirteen different pathogenic HCN2 variants, including eleven missense variants affecting highly conserved amino acids, one frameshift variant, and one in-frame deletion. Seven variants were monoallelic of which five occurred de novo, one was not maternally inherited, one was inherited from a father with mild learning disabilities, and one was of unknown inheritance. The remaining six variants were biallelic, with four homozygous and two compound heterozygous variants. Functional studies using two-electrode voltage-clamp recordings in Xenopus laevis oocytes were performed on three monoallelic variants, p.(Arg324His), p.(Ala363Val), and p.(Met374Leu), and three biallelic variants, p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp). The p.(Arg324His) variant induced a strong increase of HCN2 conductance, while p.(Ala363Val) and p.(Met374Leu) displayed dominant negative effects, leading to a partial loss of HCN2 channel function. By confocal imaging, we found that the p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp) pathogenic variants impaired membrane trafficking, resulting in a complete loss of HCN2 elicited currents in Xenopus oocytes. Structural 3D-analysis in depolarized and hyperpolarized states of HCN2 channels, revealed that the pathogenic variants p.(His205Gln), p.(Ser409Leu), p.(Arg324Cys), p.(Asn369Ser) and p.(Gly460Asp) modify molecular interactions altering HCN2 function. Taken together, our data broadens the clinical spectrum associated with HCN2 variants, and disclose that HCN2 is involved in developmental encephalopathy with or without epilepsy.

18.
J Food Sci ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563092

RESUMO

Although the benefits of sugarcane polyphenol (SP) are well documented, its function in preventing photoaging has not yet been investigated. This study aimed to investigate the protective effects of SP in preventing ultraviolet (UV)-B-induced skin photoaging in Balb/c mice, as well as the underlying mechanism. Chlorogenic acid was determined to be the primary component of SP by using high-performance liquid chromatography-mass spectrometry. SP and chlorogenic acid were orally administrated to mice for 56 days, and UV-B radiation exposure was administered 14 days after SP and chlorogenic acid administration and lasted 42 days to cause photoaging. SP and chlorogenic acid administrations significantly alleviated the UV-B-induced mouse skin photoaging, as indicated by the decrease in epidermal thickness, increase in the collagen (COL) volume fraction, and elevation in type 1 and type 3 COL contents. Notably, both SP and chlorogenic acid effectively reversed the overexpression of matrix metalloproteinase induced by UV-B exposure in the mouse skin. Furthermore, SP and chlorogenic acid reduced the expression of receptor for advanced glycosylation end products in the mice; amplified the activities of antioxidant enzymes superoxide dismutase and catalase; reduced malondialdehyde levels; and decreased inflammatory cytokines interleukin 1ß, interleukin 6, and tumor necrosis factor α levels. SP could be a prospective dietary supplement for anti-photoaging applications due to its antioxidant, anti-inflammatory, and anti-glycosylation attributes, and chlorogenic acid might play a major role in these effects. PRACTICAL APPLICATION: This study can provide a scientific basis for the practical application of sugarcane polyphenols. We expect that sugarcane polyphenols can be used in food and beverage products to provide flavor while combating skin aging.

19.
Small ; : e2312067, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563596

RESUMO

The open circuit voltage (VOC) losses at multiple interfaces within perovskite solar cells (PSCs) limit the improvements in power conversion efficiency (PCE). Herein, a tailored strategy is proposed to reduce the energy offset at both hetero-interfaces within PSCs to decrease the VOC losses. For the interface of perovskite and electron transport layer where exists a mass of defects, it uses the pyromellitic acid to serve as a molecular bridge, which reduces non-radiative recombination and energy level offset. For the interface of perovskite and hole transport layer, which includes a passivator of PEAI, the detrimental effect (negative shift of work function) of PEAI passivation and optimizing the interface energy level alignment are neutralized by incorporating (2-(4-(bis(4-methoxyphenyl)amino)phenyl)-1-cyanovinyl)phosphonic acid. Owing to synergistically reduced hetero-interface energy offset, the PSCs achieve a PCE of 25.13%, and the VOC is increased from 1.134 to 1.174 V. In addition, the resulting PSCs possess enhanced stability, the unencapsulated PSCs can maintain ≈96% and ≈97% of their initial PCE after 2000 h of aging under ambient conditions and 210 h under operation conditions.

20.
Opt Express ; 32(7): 12291-12302, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571056

RESUMO

We report a Ta2O5 photonic platform with a propagation loss of 0.49 dB/cm at 1550 nm, of 0.86 dB/cm at 780 nm, and of 3.76 dB/cm at 2000 nm. The thermal bistability measurement is conducted in the entire C-band for the first time to reveal the absorption loss of Ta2O5 waveguides, offering guidelines for further reduction of the waveguide loss. We also characterize the Ta2O5 waveguide temperature response, which shows favorable thermal stability. The fabrication process temperature is below 350°C, which is friendly to integration with active optoelectronic components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...